de$1$ - definition. What is de$1$
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

DIVERGENT SERIES
1+1+1+···; 1 + 1 + 1 + 1 + 1 + · · ·; 1 + 1 + 1 + 1 + · · ·; 1 + 1 + 1 + 1 + …; 1 + 1 + 1 + 1 + ...; Zeta(0)
  • alt=A graph showing a line that dips just below the ''y''-axis

De Bruyère C 1         
  • Crash of the C 1 prototype with rotary-tip aileron detail.
TYPE OF AIRCRAFT
De Bruyere C 1
The de Bruyère C 1 was a prototype French single seat pusher canard Fighter of unusual design produced during World War I. The sole example built crashed on its first flight, and development terminated.
Búnker 1 de Camposoto         
  • thumb
HISTORIC BUNKER IN SAN FERNANDO, SPAIN
Bunker 1 de Camposoto
Búnker 1 de Camposoto is a bunker located in San Fernando in the Province of Cádiz, Andalusia, Spain. It was built on Camposoto beach during the Spanish Civil War.
De Havilland Canada DHC-1 Chipmunk         
  • A Super Chipmunk on display at the [[Udvar-Hazy Center]].
  • Chipmunk with ribbons at Old Warden 2008
  • A DHC-1 Chipmunk
  • Privately owned DHC-1 Chipmunk F-AZSM
  • The Sundowner conversion at [[Bankstown Airport]] Sydney in 1970
  • Front cockpit of a Chipmunk
  • Lycoming]] horizontally opposed engine
  • A former RCAF de Havilland DHC-1B-2-S5 Chipmunk with the Canadian-style [[bubble canopy]] in the [[Canadian Warplane Heritage Museum]], [[Hamilton, Ontario]]
  • D-EPAK]]'', painted in RAF markings
  • de Havilland DHC-1 Chipmunk T.20 (not modernized), in [[Portuguese Air Force]] original colours
  • de Havilland DHC-1B-2-S5 Chipmunk Gipsy Major 10 engine installation
  • G-BBNA the prototype Supermunk conversion
  • Aerobatic pilot Harold Krier taxiing a Super Chipmunk, at an airshow in Fairview, Oklahoma 1970
  • spin]] trainer at the [[Mojave Airport]]
  • FAP 1335, a Portuguese Air Force Academy Supermunk at Beja Air Force Base
  • RCAF DHC-1B-2-S5 Chipmunk with the Canadian-style [[bubble canopy]] at an air show
  • Super Chipmunk (fixed gear)
1946 TRAINER AIRCRAFT MODEL BY DE HAVILLAND CANADA
De Havilland Chipmunk; DHC-1; CT-120 Chipmunk; De Havilland Canada Chipmunk; DHC-1 Chipmunk; De Havilland DHC-1; DeHavilland Chipmunk; Chipmunk T.1; De Havilland Canada DHC-1; De Havilland Canada CT-120; DHC Chipmunk; De Havilland Canada DHC-1 Chipmunk T.10; CT-120; De Havilland Canada DHC-1B-2-S5 Chipmunk Mk.2; DH Chipmunks; De Havilland Canada DHC-1 Chipmunk 22A
The de Havilland Canada DHC-1 Chipmunk is a tandem, two-seat, single-engined primary trainer aircraft designed and developed by Canadian aircraft manufacturer de Havilland Canada. It was developed shortly after the Second World War and sold in large numbers during the immediate post-war years, being typically employed as a replacement for the de Havilland Tiger Moth biplane.

ويكيبيديا

1 + 1 + 1 + 1 + ⋯

In mathematics, 1 + 1 + 1 + 1 + ⋯, also written n = 1 n 0 {\displaystyle \sum _{n=1}^{\infty }n^{0}} , n = 1 1 n {\displaystyle \sum _{n=1}^{\infty }1^{n}} , or simply n = 1 1 {\displaystyle \sum _{n=1}^{\infty }1} , is a divergent series, meaning that its sequence of partial sums does not converge to a limit in the real numbers. The sequence 1n can be thought of as a geometric series with the common ratio 1. Unlike other geometric series with rational ratio (except −1), it converges in neither the real numbers nor in the p-adic numbers for some p. In the context of the extended real number line

n = 1 1 = + , {\displaystyle \sum _{n=1}^{\infty }1=+\infty \,,}

since its sequence of partial sums increases monotonically without bound.

Where the sum of n0 occurs in physical applications, it may sometimes be interpreted by zeta function regularization, as the value at s = 0 of the Riemann zeta function:

ζ ( s ) = n = 1 1 n s = 1 1 2 1 s n = 1 ( 1 ) n + 1 n s . {\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}={\frac {1}{1-2^{1-s}}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n^{s}}}\,.}

The two formulas given above are not valid at zero however, but the analytic continuation is.

ζ ( s ) = 2 s π s 1   sin ( π s 2 )   Γ ( 1 s )   ζ ( 1 s ) , {\displaystyle \zeta (s)=2^{s}\pi ^{s-1}\ \sin \left({\frac {\pi s}{2}}\right)\ \Gamma (1-s)\ \zeta (1-s)\!,}

Using this one gets (given that Γ(1) = 1),

ζ ( 0 ) = 1 π lim s 0   sin ( π s 2 )   ζ ( 1 s ) = 1 π lim s 0   ( π s 2 π 3 s 3 48 + . . . )   ( 1 s + . . . ) = 1 2 {\displaystyle \zeta (0)={\frac {1}{\pi }}\lim _{s\rightarrow 0}\ \sin \left({\frac {\pi s}{2}}\right)\ \zeta (1-s)={\frac {1}{\pi }}\lim _{s\rightarrow 0}\ \left({\frac {\pi s}{2}}-{\frac {\pi ^{3}s^{3}}{48}}+...\right)\ \left(-{\frac {1}{s}}+...\right)=-{\frac {1}{2}}}

where the power series expansion for ζ(s) about s = 1 follows because ζ(s) has a simple pole of residue one there. In this sense 1 + 1 + 1 + 1 + ⋯ = ζ(0) = −1/2.

Emilio Elizalde presents a comment from others about the series:

In a short period of less than a year, two distinguished physicists, A. Slavnov and F. Yndurain, gave seminars in Barcelona, about different subjects. It was remarkable that, in both presentations, at some point the speaker addressed the audience with these words: 'As everybody knows, 1 + 1 + 1 + ⋯ = −1/2.' Implying maybe: If you do not know this, it is no use to continue listening.

أمثلة من مجموعة نصية لـ٪ 1
1. En este cotejo la seleccion coreana gano al once africano con el marcador de 1 a 0.
2. La declaracion conjunta de 1''2 sobre la desnuclearizacion de la Peninsula Coreana debe ser observada y cumplida.
3. El Dirigente dio consecutivamente a la publicidad las obras, entre otras, "Materialicemos de modo consecuente el legado del gran Lider camarada Kim Il Sung para la reunificacion de la patria" (agosto de 1''7), y "Que toda la nacion unida alcance la reunificacion independiente y pacifica de la patria" (abril de 1''8) aclarando asi un nuevo atajo dirigido al movimiento por la reunificacion.
4. La unidad monolitica de Corea se ha hecho mas ferrea a traves de la "marcha penosa" ocurrida a mediados de la decada de 1''0.
5. A menos que el significado de cooperación plena haya cambiado, es probable que Bush descertifique a Venezuela bajo la ley de Control Internacional de Narcóticos de 1''2.